

ERDC MSRC PET Preprint No. 01-32

Minimizing Runtime Performance Variation with
Cpusets on the SGI Origin 3800

by

Jeff Hensley, Robert Alter, Daniel Duffy, Mark Fahey, Lee Higbie
Tom Oppe, William Ward, Marty Bullock, Jeff Becklehimer

9 October 2001

Work funded by the Department of Defense
High Performance Computing Modernization Program
U.S. Army Engineer Research and Development Center
Major Shared Resource Center through

Programming Environment and Training

Supported by Contract Number: DAHC94-96-C0002
Computer Sciences Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of Defense position, policy, or decision

unless so designated by other official documentation.

 1

Minimizing Runtime Performance Variation with Cpusets
 on the SGI Origin 3800

Jeff Hensley*, Robert Alter†, Daniel Duffy*, Mark Fahey∗, Lee Higbie*,

Tom Oppe‡, and William Ward*
Computational Science and Engineering Group

U.S. Army Engineer Research and Development Center
Major Shared Resource Center

Vicksburg, MS

Marty Bullock and Jeff Becklehimer
 SGI Federal

U.S. Army Engineer Research and Development Center
Major Shared Resource Center

Vicksburg, MS

Abstract
The U.S. Army Engineer Research and Development Center (ERDC) Major

Shared Resource Center (MSRC) currently employs one of the largest SGI Origin 3800
(O3K) systems in production use. With more than 100 users, the system has provided an
extremely robust and stable environment with good throughput. The system operates
under a high load average and users have experienced large differences in the run times
of their jobs.

In order to better understand these disparities, a series of benchmark tests

comprised of application codes was conducted on a 256-processor O3K to study the
system performance both with and without the use of cpusets. The results show a large
variation in timings of individual jobs that were run without cpusets on the loaded
system. With the implementation of cpusets, this large variation was eliminated and the
overall system performance was greatly increased.

1 Introduction
One of the largest SGI Origin 3800 (O3K) systems in production use is located at

the U.S. Army Engineer Research and Development Center (ERDC) Major Shared
Resource Center (MSRC). This O3K has 512 processors configured in a Single System
Image (SSI). An O3K is composed of compute bricks (C-bricks) interconnected by router
bricks (R-bricks). In the machines at the ERDC, each C-brick has four 400 MHz R12K
processors and four Gbytes of memory. User jobs are queued by submitting them to the
Portable Batch System (PBS) batch queuing system.

† Alpha Data Corporation
∗ Computer Sciences Corporation
‡ Data Management Consultants

 2

Since the system was brought into production status as an SSI, there have been
reports from users about inconsistencies in the time required to perform jobs. Some users
reported that the same job could take as much as five times longer to complete during one
run as during another.

Diagnosing the cause of the problem is difficult because of the inconsistencies of

reported results; one user might perceive a slowdown in performance while another user
might not. Furthermore, depending on the state/load of the machine, the same job run at
different times could result in significantly different run times. Several possible
explanations for these results are as follows:

1. Competition with system resources. As the O3K is currently configured, user,

system, and I/O processes must compete for the same resources. On a system
fully loaded with user jobs, it is quite likely that this leads to competition
between system resources and user tasks, resulting in the time-sharing of
processors for various tasks.

2. Competition for memory. From the user’s vantage, the O3K has a single
address space. Even though each C-brick has 4 Gbytes of memory (1
Gbyte/processor), processes can request and obtain much more memory than
1 Gbyte per processor. Hence, even though multiple processes may be running
on the same C-brick, several of these processes may have to access memory
located on another C-brick.

3. Migrating processes. During execution of a job, the processes are not tightly
bound to a processor and its local memory. The operating system can move
these processes around, resulting in nonlocal (off-node) memory requests.

One way to address these issues is through the use of cpusets. A cpuset is a

designated collection of processors that form a separate envelope of computational
resources (processors and/or memory). System resources can effectively be “soft”
partitioned to prevent runtime competition for resources by various tasks.

SGI provided the authors of this report access to a 256-processor O3K at the

ERDC. This machine was originally configured identically to the 512-processor machine,
i.e., without cpusets. The Computational Science and Engineering (CS&E) group at the
ERDC MSRC developed a series of benchmark tests to run on this system. The
benchmark tests were run on the system under the original configuration (without
cpusets) and then again after the system was reconfigured with cpusets.

Section 2 of this paper describes cpusets and the implementation used for this

study. Section 3 describes the throughput tests and discusses the results of these tests.
Section 4 deals with an additional test that was run to study the effect of jobs requesting
very large numbers of processors. A summary and conclusions are provided in Section 5.

 3

2 Description of Cpusets
On the O3K, cpusets can be configured to partition system resources and restrict

access to these resources. Cpusets are dynamic in the sense that they can be created and
deleted without a system reboot. A commonly accepted method of configuring cpusets is
to create a “boot cpuset” at system startup that remains static during normal operation.
This boot cpuset is used to run the operating system and associated daemons. The
remaining processors are then given to the batch scheduler to run user jobs. The batch
system can then dynamically create a cpuset for each user job at startup and delete the
cpuset upon job completion.

At creation, a cpuset is designated as either exclusive or nonexclusive. Processors

that are members of an exclusive cpuset can only be utilized through the use of the cpuset
command. Nonexclusive cpuset processors can be used through both the cpuset interface
and through normal system scheduling.

For this study, the system was reconfigured to have a boot cpuset and to use

dynamic cpusets for user job execution. The boot cpuset, which isolates the kernel
processes and daemons from the users’ jobs, consisted of two C-bricks (8 processors) for
this study. This cpuset is crucial to eliminating one source of resource contention. See
Figure 1 for a schematic representation of the cpuset configuration on the system.

Figure 1. Schematic representation of cpusets on the O3K.

It is important to note that, as implemented for this study, PBS defines cpusets in

terms of C-bricks, so that each cpuset has a multiple of four processors and a given job
has exclusive access to the resources of the cpuset. This means that each user job must
request system resources in terms of C-bricks, not processors. A user wanting to run a
serial job would need to request the entire C-brick (4 processors). For optimal system
usage, the user must be aware of this issue.

Dynamic cpusets
user jobs

(62 nodes)

(One job per cpuset)

Boot cpuset
system process, daemons

 4

Also note that the cpusets were configured to include the memory of each C-
brick, so that the memory available to a given job is the total memory in the cpuset (that
is, 4 Gbytes times the number of C-bricks).

3 Benchmark Tests
A throughput benchmark test was developed that consisted of jobs using six

different user application codes; all of the codes were MPI codes. Different input sets and
different processor counts were used to create 15 different jobs, and some of these jobs
were run multiple times in a given throughput test. This resulted in a total of 39 tasks in
the throughput test.

The throughput test was run three times while the system was configured without

cpusets and three times while the system was configured with cpusets. Additionally, each
problem was run, without cpusets, as a dedicated test multiple times (twice in some cases,
three times in others) to provide a reference for optimum time. The jobs were submitted
to the batch queue (using PBS) in each of the throughput tests and the order of job
submission was the same in each test.

 The timings for the various runs are given in Table 1. A baseline dedicated time is
given for each job. The reference time for the dedicated test is an average over multiple
(at least two and usually three) dedicated runs. In fact, this average was taken for
dedicated runs while the system was configured without cpusets. The times were, in
general, marginally less for dedicated runs when the system was configured with
cpusets.1 The last row of the table gives the total wallclock time of all of the jobs
comprising each throughput test, while the entry in the dedicated column provides the
total time if all of the jobs had completed in the amount of time required for the
individual dedicated runs.

Looking at the total times, one can easily see the large variation in performance
for the three tests without cpusets. The observed variation between test 1 (87,591 s) and
test 3 (117,473 s) is a relative difference of approximately 34 percent.

The observed variation of time for identical jobs when running without cpusets is

quite striking. Consider, for example, prob_m. This 32-processor job was run six times in
each throughput test, and, in the absence of cpusets, there is a remarkable variation in the
observed execution times, both within a given throughput test and across throughput
tests. The minimum time recorded for this task (without cpusets) was 2,514 s (which is
essentially the dedicated time), but one instance of prob_m actually took 13,321 s, or
more than five times as long. Figure 2 graphically illustrates the timing variation for
prob_m, while Figure 3 shows the variation that occurred for prob_f.

1 One possible explanation for this minor variation is that without cpusets there may still be some modest
conflict between the user job and the system tasks. This conflict might be eliminated when using cpusets.
However, in tests of one code that was not part of the throughput tests, the time for dedicated runs was
measurably faster (by approximately 10 percent) when not using cpusets. This code used MLP rather than
MPI as all other codes did. The authors do not have any explanation for this result at this time.

 5

In contrast to the timing fluctuations observed when cpusets were not in place is

the consistency when the machine was configured to use cpusets. Timing variations are
quite small and the timings corresponding to identical runs are normally within a few
seconds of each other.

Finally, the total time required by the entire throughput test is markedly less when

cpusets are used. Note that the ratio of the worst total time without cpusets (117,473 s) to
the total time with cpusets (62,654 s) is approximately 1.9, meaning that the throughput
time was cut nearly in half by using cpusets (while using fewer processors).

4 Additional Tests
Anecdotal evidence gathered by CS&E suggests that jobs run at large processor

counts (i.e., jobs that request all or almost all of the processors) on the O3K at the ERDC
MSRC may suffer some performance degradation. Two codes were selected to run jobs at
large processor counts on the system while it was configured with cpusets and again
while it was configured without cpusets. The largest number of processors available was
248 when the system was configured with cpusets; when cpusets were not used, it was
possible to use all 256 processors.

Since it had been shown that individual runs with cpusets resulted in consistent

amounts of wall-clock time used, the two codes were run only once with cpusets
configured on 248 processors (this took into account the 8-processor boot cpuset).
Additionally, these codes were run without a boot cpuset configured at both 248 and 256
processors counts. The results of these tests are shown in Table 2.

Remarkably, for these two codes, the results show that there is no advantage to

using all 256 processors on the machine. In fact, it is to the user’s advantage to run within
a cpuset with fewer processors while eliminating any contention with the system
processes.

5 Conclusions
The results of these tests are convincing; if users’ jobs are scheduled on all the

processors of an O3K there will be large variations in performance of individual jobs
unless cpusets are configured. The magnitude of these variations can be quite striking,
with some jobs taking as much as five times longer to run in some instances than in
another. Although the data gathered here does not necessarily indicate what the problem
is, it does appear that contention for system resources is the likely culprit.

These results strongly suggest that due consideration should be given to

reconfiguring the 512-processor O3K at the ERDC MSRC to run with cpusets. The
advantages and disadvantages of reconfiguring the O3K with cpusets are summarized as
follows:

 6

Advantages

1. The use of cpusets partitions jobs from each other. One user’ s job will not
compete with another user’ s job (or system jobs) for the resources of a given C-
brick.

2. The use of cpusets will ensure consistent performance.
3. The use of cpusets will enhance overall system performance.

Disadvantages

1. PBS requires that the user request processors in blocks of four. For example, a
serial job running on one processor would actually require all four processors of
one C-brick.

2. The user must understand that jobs requiring large amounts of memory will
require the allocation of additional processors. If a job requires more than 1 Gbyte
of memory per processor, then additional processors must be requested to obtain
the necessary memory. For example, if a job needs 16 Gbytes of memory, it
would require 16 processors even if it were an MPI job with four processes.

3. The configuration would use a boot cpuset consisting of (probably) eight
processors. These processors would not be included in the compute pool.

4. Users would have to be educated about the above issues, particularly items #1 and
#2 above.

The disadvantages certainly must be considered. However, the observed

improvement in the throughput test with cpusets in place is striking; the worst throughput
test without cpusets took nearly twice the time of the throughput tests with cpusets. Also,
the inconsistency that exists on the loaded machine without cpusets can create confusion
and concern for the users.

The most problematic concern is that jobs would be required to request processors

in blocks of four. A user who wants to run a job on fewer than four processors may
complain about being charged for more than his/her job is actually using. However, there
are other possibilities, including different batch queuing systems, which could be
explored.

The creation of a boot cpuset reduces the total number of processors available to

run a particular job. For this study, the number of processors in the compute pool was
reduced from 256 to 248. However, the test that was performed with large processor
count jobs gives an indication that one might experience poorer performance when trying
to use all of the processors on the machine (that is, without cpusets) than would be
obtained by using fewer processors. In the event that there is a special need to use all of
the resources of the machine, this could still be accomplished by using dedicated time on
the machine and reconfiguring without cpusets after a reboot.

 7

6 Future Tests
Resource allocation and job scheduling on a high-performance computer is an

intricate task. While the results in this study strongly indicate that the use of cpusets can
greatly enhance system performance, there are other issues to be considered.

One issue that merits further exploration is the effect of the parallel programming

paradigm that is used. As mentioned above, all of the codes used in the throughput tests
were MPI codes, but a code that used MLP was run in dedicated mode when the system
was configured with cpusets and without cpusets. The times required with cpusets were
approximately 10 percent longer than without cpusets. Future tests should include codes
that use other parallel mechanisms, such as SHMEM and OpenMP.

 8

Table 1. Results of throughput tests. Times (in seconds) are recorded for the various
problems (and multiple runs).

no. of
problem cpus copy test 1 test 2 test 3 test 1 test 2 test 3
prob_a 128 1 3528 3707 2796 2802 2749 2753 2754
prob_b 8 1 2602 2727 2630 2626 2625 2625 2624

2 2806 2907 3064 2623 2622 2624
3 2646 2604 3967 2623 2624 2624
4 2608 2605 2602 2623 2624 2624
5 3496 4067 2601 2623 2624 2623
6 2606 3681 2774 2628 2624 2624
7 2880 5354 2603 2625 2624 2624

prob_c 32 1 726 728 2167 733 732 733 732
2 729 730 1273 731 733 731
3 730 729 732 732 731 732
4 728 730 1400 733 732 731
5 769 731 786 736 735 731

prob_d 128 1 6214 6296 4498 3234 3217 3214 3213
prob_e 32 1 4169 11040 3108 3046 3056 3053 3047

2 3056 3065 13882 3055 3048 3046
prob_f 64 1 1384 5311 1616 1381 1383 1382 1382

2 2763 2070 2789 1381 1382 1384
prob_g 64 1 772 428 619 393 393 394 417

2 702 428 554 393 393 397
prob_h 16 1 766 774 765 765 763 763 765

2 772 765 764 764 765 764
3 779 769 781 765 766 765

prog_i 32 1 429 427 419 419 420 422 420
2 424 422 423 422 422 420
3 423 437 421 421 422 422

prob_j 64 1 254 255 251 249 248 249 250
2 252 256 345 251 248 248
3 256 258 260 250 249 250

prob_k 64 1 3186 2385 2728 2290 2287 2289 2287
prob_l 128 1 1280 1264 1267 1253 1251 1252 1251
prob_m 32 1 3408 2527 2514 2523 2516 2507 2500

2 7671 10701 9496 2519 2504 2507
3 3754 2623 13321 2521 2513 2504
4 4238 9513 12442 2513 2507 2504
5 7764 2528 9397 2511 2502 2507
6 2629 2528 2522 2516 2513 2508

prob_n 112 1 2606 1420 2086 1352 1334 1332 1330
prob_o 224 1 786 794 810 832 786 785 788

87591 100584 117473 62886 62719 62660 62654

without cpusets with cpusetsdedicated

TOTAL

 9

Throughput times for prob_m

0

2000

4000

6000

8000

10000

12000

14000

Without cpusets With cpusets

Test 1

Test 2

Test 3

Figure 2. Throughput times for prob_m showing execution times for the six identical jobs
that were part of each of the three throughput tests.

Throughput times for prob_f

0

1000

2000

3000

4000

5000

6000

Without cpusets With cpusets

Test 1

Test 2

Test 3

Figure 3. Throughput times for prob_f showing execution times for the two identical jobs
that were part of each of the three throughput tests.

 10

CODE 1

of with without

processors cpusets cpusets

 1 2 3

248 616 627 627 630

256 n/a 621 630 625

CODE 2

of with without

processors cpusets cpusets

 1 2 3

248 1676 1682 1684 1704

256 n/a 1730 1719 1725

Table 2. Times (in seconds) of tests of two codes run at large processor counts.

